# Roots of Polynomials¶

## Contents¶

## Introduction¶

Classes are provided for solving quadratic, cubic, and quartic
equations as well as general polynomials. There is a standard
nomenclature: classes which handle polynomials with real coefficients
and real roots end with the suffix `_real`

(quadratic_real, cubic_real and
quartic_real), classes which handle real
coefficients and complex roots end with the suffix `_real_coeff`

(
quadratic_real_coeff,
cubic_real_coeff, quartic_real_coeff, and poly_real_coeff),
and classes which handle complex polynomials with complex coefficients
end with the suffix `_complex`

(quadratic_complex, cubic_complex,
quartic_complex, and poly_complex). As a reminder, complex roots may not occur in
conjugate pairs if the coefficients are not real. Most of these
routines will return an error if the leading coefficient is zero.

In the public interfaces to the polynomial solvers, the
complex type `std::complex<double>`

is used.

For quadratics, quadratic_real_coeff_gsl2 is the best if the coefficients are real, while if the coefficients are complex, use quadratic_complex_std. Both of these classes work with multiprecision floating point types.

For cubics with real coefficients, cubic_real_coeff_gsl, cubic_real_coeff_gsl2, and cubic_real_coeff_cern are nearly equivalent. the GSL-based classes are a bit faster and more accurate, but the CERNLIB-based class is a bit better at identifying the nature of the roots. If the coefficients are complex, use cubic_complex_std, but keep in mind this class sometimes fails to properly identify the nature of the roots. The classes cubic_real_coeff_gsl2, cubic_real_coeff_cern, and cubic_complex_std all work with multiprecision floating point types.

Currently, quartics with real coefficients are best solved with poly_real_coeff_gsl, albeit a bit more slowly than direct solvers. The direct solvers are faster, but fail unpredictably, and are thus still experimental.

## Polynomial solver example¶

This example shows how to find the roots of the second-, third-, fourth-, and fifth-order Chebyshev polynomials

For the Chebyshev polynomial of order \(n\), the roots are given by

for \(k = 1,\ldots,n\) These roots are used in cheb_approx_tl to approximate functions using Chebyshev polynomials .

```
/* Example: ex_poly.cpp
-------------------------------------------------------------------
Demonstrate the solution of the Chebyshev polynomials. See "License
Information" section of the documentation for license information.
*/
#include <boost/numeric/ublas/vector.hpp>
#include <o2scl/poly.h>
// For pi
#include <o2scl/constants.h>
#include <o2scl/vector.h>
#include <o2scl/test_mgr.h>
using namespace std;
using namespace o2scl;
using namespace o2scl_const;
int main(void) {
cout.setf(ios::scientific);
cout.setf(ios::showpos);
test_mgr t;
t.set_output_level(1);
typedef boost::numeric::ublas::vector<double> ubvector;
// Quadratic solver
quadratic_real_coeff_gsl2<> quad;
// Cubic solver
cubic_real_coeff_cern<> cubic;
// Quartic solver
quartic_real_coeff_cern<> quart;
// Generic polynomial solver
poly_real_coeff_gsl<> gen;
// Storage for the roots
ubvector v(5);
double d;
std::vector<std::complex<double> > ca(5);
// The second order polynomial
cout << "Second order roots: " << endl;
quad.solve_r(2.0,0.0,-1.0,v[0],v[1]);
// Sort the roots and compare with the exact results
vector_sort<ubvector,double>(2,v);
for(size_t i=0;i<2;i++) {
double exact=cos(pi*(((double)(2-i))-0.5)/2.0);
cout << v[i] << " " << exact << endl;
t.test_abs(v[i],exact,1.0e-14,"2nd order");
}
cout << endl;
// The third order polynomial
cout << "Third order roots: " << endl;
cubic.solve_rc(4.0,0.0,-3.0,0.0,v[0],ca[0],ca[1]);
// Sort the roots and compare with the exact results
v[1]=ca[0].real();
v[2]=ca[1].real();
vector_sort<ubvector,double>(3,v);
for(size_t i=0;i<3;i++) {
double exact=cos(pi*(((double)(3-i))-0.5)/3.0);
cout << v[i] << " " << exact << endl;
if (i==1) {
t.test_abs(v[i],exact,1.0e-14,"3rd order");
} else {
t.test_abs(v[i],exact,1.0e-14,"3rd order");
}
}
cout << endl;
// The fourth order polynomial
cout << "Fourth order roots: " << endl;
quart.solve_rc(8.0,0.0,-8.0,0.0,1.0,ca[0],ca[1],ca[2],ca[3]);
// Sort the roots and compare with the exact results
for(size_t i=0;i<4;i++) v[i]=ca[i].real();
vector_sort<ubvector,double>(4,v);
for(size_t i=0;i<4;i++) {
double exact=cos(pi*(((double)(4-i))-0.5)/4.0);
cout << v[i] << " " << exact << endl;
t.test_abs(v[i],exact,1.0e-14,"4th order");
}
cout << endl;
// The fifth order polynomial
cout << "Fifth order roots: " << endl;
vector<double> co={16.0,0.0,-20.0,0.0,5.0,0.0};
gen.solve_rc_arr(5,co,ca);
// Sort the roots and compare with the exact results
for(size_t i=0;i<5;i++) v[i]=ca[i].real();
vector_sort<ubvector,double>(5,v);
for(size_t i=0;i<5;i++) {
double exact=cos(pi*(((double)(5-i))-0.5)/5.0);
cout << v[i] << " " << exact << endl;
t.test_abs(v[i],exact,1.0e-14,"5th order");
}
cout << endl;
t.report();
return 0;
}
```