Fermion Details
O2scl
Interacting and non-interacting fermions
In many cases, the non-interacting expressions for fermion
thermodynamics can be used in interacting systems as long as one
replaces the mass with an effective mass, \(m^{*}\) and the
chemical potential with an effective chemical potential, \(\nu\) .
When \(\nu\) includes the rest mass (denoted
\(m\)), o2scl::part_tl::inc_rest_mass
should
be true
, and the fermionic distribution function is
\[f = \frac{1}{1+e^{(\sqrt{k^2+m^{* 2}}-\nu)/T}}\]
Then the energy density will also include the rest mass energy
density, \(n m\). When \(\nu\) does not include the rest mass,
the fermionic distribution function is
\[f = \frac{1}{1+e^{(\sqrt{k^2+m^{* 2}}-\nu-m)/T}}\]
For convenience, we often define \(E^{*} \equiv \sqrt{k^2+m^{*
2}}\). In the documentation below, expressions to the left of
the semicolon apply when inc_rest_mass
is true, and
expressions to the right of the semicolon apply when inc_rest_mass
is false.
Relativistic versus non-relativistic fermions
There are a few distinctions between how relativistic and
nonrelativistic fermions are handled in o2scl
which are worth noting. For an interacting relativistic fermion, the
effective mass, \(m^{*}\), and the effective chemical potential,
\(\nu\) are defined so that the energy density is
\[\begin{split}\begin{eqnarray}
{\varepsilon}_{\mathrm{R}} &=& \frac{g}{2 \pi^2} \int
dk~\frac{k^2 \sqrt{k^2+m^{* 2}}}
{ 1+\exp\left[\left(\sqrt{k^2+m^{*2}}-
\nu_{\mathrm{R}}\right)/T\right]} \\
&=& \frac{g}{2 \pi^2} \int
dk~\frac{k^2 \sqrt{k^2+m^{* 2}} }
{1+\exp\left[\left(\sqrt{k^2+m^{*2}}-
\bar{\nu}_{\mathrm{R}}-m\right)/T\right]}
\end{eqnarray}\end{split}\]
for a relativistic fermion, where we define the chemical potential
without the rest mass with \(\bar{\nu}_{\mathrm{R}} \equiv
\nu_{\mathrm{R}}-m\). When o2scl::part_tl::inc_rest_mass
is
true, o2scl::part_tl::nu
is equal to \(\nu_{\mathrm{R}}\)
and when o2scl::part_tl::inc_rest_mass
is false,
o2scl::part_tl::nu
is equal to
\(\bar{\nu}_{\mathrm{R}}\) . If we define \(\psi_{\mathrm{R}}
= (\nu_{\mathrm{R}}-m^{*})/T\), \(\phi = m^{*}/T\), \(u \equiv
k/T\) then the energy density is
\[{\varepsilon}_{\mathrm{R}} = \frac{g T^4}{2 \pi^2} \int
du~\frac{u^2 \sqrt{u^2+\phi^2}}
{ 1+\exp\left[\sqrt{u^2+\phi^2} - \psi_{\mathrm{R}} - \phi \right]}\]
This expression is used for
o2scl::part_calibrate_class_tl::part_calibrate()
because
\(\varepsilon_{\mathrm{R}}/(g T^4)\) depends only on
\(\psi_{\mathrm{R}}\) and \(\phi\). For a nonrelativistic
fermion,
\[\begin{split}\begin{eqnarray}
\bar{\varepsilon}_{\mathrm{NR}} &=&
\frac{g}{2 \pi^2} \int dk~
\frac{k^4}{2 m^{*}}
\left\{ 1+\exp\left[\left(\frac{k^2}{2 m^{*}}-
\bar{\nu}_{\mathrm{NR}}\right)/T\right] \right\}^{-1} \\
&=& \frac{g}{2 \pi^2} \int dk~
\frac{k^4}{2 m^{*}}
\left\{ 1+\exp\left[\left(\frac{k^2}{2 m^{*}}-
\nu_{\mathrm{NR}}+m\right)/T\right] \right\}^{-1}
\end{eqnarray}\end{split}\]
where \(\bar{\nu}_{\mathrm{NR}} = \nu_{\mathrm{NR}} - m\) . Note
that the rest mass energy density is
\(\varepsilon_{\mathrm{rest}} = n m\) (not \(n m^{*}\)) in
both cases, but it is included in \(\varepsilon_{\mathrm{R}}\)
while it is not included in \(\bar{\varepsilon}_{\mathrm{NR}}\) .
Taking the nonrelativsitic limit of the relativistic energy density
shows that \(\nu_{\mathrm{R}} - m^{*} = \bar{\nu}_{\mathrm{NR}}\).
Thus the class fermion_nonrel_tl uses the
value stored in o2scl::part_tl::nu
slightly differently
than does fermion_rel_tl and fermion_eff . The Fermi momentum is also handled slightly
differently, \(k_{F,\mathrm{R}} \equiv
\sqrt{\nu_{\mathrm{R}}^2-m^{* 2}}\) and \(k_{F,\mathrm{NR}} \equiv
\sqrt{2 \bar{\nu}_{\mathrm{NR}} m^{*}}\).
Now if we define \(u_{\mathrm{NR}} \equiv k^2/(2 m^{*} T)\)
and \(\psi_{\mathrm{NR}} \equiv (\nu_{\mathrm{NR}}-m^{*})/T\)
then the argument of the exponential is
\[\frac{k^2}{2 m^{*} T } - \frac{\bar{\nu}_{\mathrm{NR}}}{T} =
u_{\mathrm{NR}} - \psi_{\mathrm{NR}} + \frac{m}{T}- \phi\]
which is inconvenient because then \(\varepsilon_{\mathrm{NR}}/(g
T^4)\) is no longer a function of \(\psi_{\mathrm{NR}}\) and
\(\phi\) alone. Thus we define \(\psi_{\mathrm{NR}} \equiv
\bar{\nu}_{\mathrm{NR}}/T\) and then the energy density is
\[\bar{\varepsilon}_{\mathrm{NR}} = \frac{g T^4}{2 \pi^2} \int
du_{\mathrm{NR}}~\frac{\sqrt{2}~u_{\mathrm{NR}}^{3/2} \phi^{3/2}}
{ 1+\exp\left[u_{\mathrm{NR}} - \psi_{\mathrm{NR}} \right]}\]
which is now a function of \(\psi_{\mathrm{NR}}\) and \(\phi\)
alone. This is the form used to compute the energy density in
fermion_nonrel_tl and the definition of
\(\psi_{\mathrm{NR}}\) used for nonrelativistic fermions in ref
o2scl::part_calibrate_class_tl::part_calibrate()
.
Upper limits
The fermionic integrands vanish when the argument of
the exponential becomes large compared to a positive
number \(\zeta\).
This condition is
\[\sqrt{k^2+m^{* 2}}-\nu \gg \zeta T \quad ; \quad
\sqrt{k^2+m^{* 2}}-\nu-m \gg \zeta T\]
Thus solving
for the momentum, an upper limit, \(k_{\mathrm{ul}}\) is
\[k_{\mathrm{ul}} = \sqrt{\left(\zeta T + \nu\right)^2-m^{* 2}}
\quad ; \quad
k_{\mathrm{ul}} = \sqrt{\left(\zeta T + m + \nu\right)^2-m^{* 2}}\]
The entropy is only significant at the Fermi surface, thus
in the degenerate case, the lower limit of the entropy
integral can be given be determined by the value of \(k\)
which solves
\[- \zeta = \frac{\sqrt{k^2+m^{* 2}}-\nu}{T}
\quad ; \quad
- \zeta = \frac{\sqrt{k^2+m^{* 2}}-\nu-m}{T}\]
The solution is
\[k_{\mathrm{ll}} = \sqrt{(-\zeta T+{\nu})^2-m^{*,2}}
\quad ; \quad
k_{\mathrm{ll}} = \sqrt{(-\zeta T + m +\nu)^2-m^{*,2}}\]
which is a valid lower limit only if the argument under
the square root is positive.
Integrands
The energy density is
\[\varepsilon = \frac{g}{2 \pi^2} \int_0^{\infty}
k^2~dk~\sqrt{k^2+m^{* 2}} f
\quad ; \quad
\varepsilon = \frac{g}{2 \pi^2} \int_0^{\infty}
k^2~dk~\left(\sqrt{k^2+m^{* 2}}-m\right) f \, ,\]
the number density is
\[n = \frac{g}{2 \pi^2} \int_0^{\infty}
k^2~dk~f \, ,\]
and the entropy density is
\[s = \frac{g}{2 \pi^2} \int_0^{\infty}
dk~(-k^2 {\cal S})\]
where
\[{\cal S}\equiv f \ln f +(1-f) \ln (1-f)
\quad ; \quad
\frac{\partial {\cal S}}{\partial f} = \ln
\left(\frac{f}{1-f}\right) \, .\]
The derivative can also be written
\[\frac{\partial {\cal S}}{\partial f} =
\left(\frac{\nu-E^{*}}{T}\right)
\quad ; \quad
\frac{\partial {\cal S}}{\partial f} =
\left(\frac{\nu-E^{*}+m}{T}\right)\]
In the degenerate regime, \({\cal S}\), can lose precision when
\((E^{*} - \nu)/T\) is negative and sufficiently large in absolute
magnitude. Thus when \((E^{*} - \nu)/T < \xi\) (for \(\xi
\rightarrow - \infty\) ) an alternative expression
\[{\cal S} \approx
e^{(E^{*}-\nu)/T}
\left( \frac{E^{*} -\nu-T}{T} \right)
\quad ; \quad
{\cal S} \approx
e^{(E^{*}-\nu-m)/T}
\left( \frac{E^{*} -\nu-m-T}{T} \right)
\,\]
can be used.
Non-degenerate integrands
The integrands in the non-degenerate regime are written in a
dimensionless form, by defining \(u=(E^{*}-m^{*})/T\) (this choice
ensures \(k=0\) corresponds to \(u=0\)), \(y \equiv \nu/
T\) (or \(y = (\nu+m)/T\) if the chemical potential does not
include the mass), and \(\eta \equiv m^{*}/T\). Then \(k/T =
\sqrt{u^2+2 u \eta}\), \((1/T) dk = E^{*}/k du =
(u+\eta)/\sqrt{u^2+2 u \eta}~du\), and \(f = 1/(1+e^{u+\eta-y})\) .
The density is
\[n = \frac{g T^3}{2 \pi^2} \int_0^{\infty}~du~
\sqrt{u^2+2 u \eta} (u+\eta)
\left(1+e^{u+\eta-y}\right)^{-1}\]
the energy density is
\[\varepsilon = \frac{g T^4}{2 \pi^2} \int_0^{\infty}~du~
\sqrt{u^2+2 u \eta} (u+\eta)^2
\left(1+e^{u+\eta-y}\right)^{-1}\]
and the entropy density is
\[s = -\frac{g T^3}{2 \pi^2} \int_0^{\infty}~du~
\sqrt{u^2+2 u \eta} (u+\eta) {\cal S}\]
Distribution function derivatives
The relevant
derivatives of the distribution function are
\[\frac{\partial f}{\partial T}=
f(1-f)\frac{E^{*}-\nu}{T^2}
\quad ; \quad
\frac{\partial f}{\partial T}=
f(1-f)\frac{E^{*}-m-\nu}{T^2}\]
\[\frac{\partial f}{\partial \nu}=
f(1-f)\frac{1}{T}\]
\[\frac{\partial f}{\partial k}=
-f(1-f)\frac{k}{E^{*} T}\]
\[\frac{\partial f}{\partial m^{*}}=
-f(1-f)\frac{m^{*}}{E^{*} T}\]
The derivatives can be integrated directly or they may be
converted to integrals over the distribution function through an
integration by parts
\[\int_a^b f(k) \frac{d g(k)}{dk} dk = \left.f(k) g(k)\right|_{k=a}^{k=b}
- \int_a^b g(k) \frac{d f(k)}{dk} dk\]
using the distribution function for \(f(k)\) and 0 and
\(\infty\) as the limits, we have
\[\frac{g}{2 \pi^2} \int_0^{\infty} \frac{d g(k)}{dk} f dk =
\frac{g}{2 \pi^2} \int_0^{\infty} g(k) f (1-f) \frac{k}{E^{*} T} dk\]
as long as \(g(k)\) vanishes at \(k=0\) .
Rewriting using \(g(k) = h(k) E^{*} T/k\)
\[\frac{g}{2 \pi^2} \int_0^{\infty} h(k) f (1-f) dk =
\frac{g}{2 \pi^2} \int_0^{\infty} f \frac{T}{k}
\left[ h^{\prime} E^{*}-\frac{h E^{*}}{k}+\frac{h k}{E^{*}} \right] dk\]
as long as \(h(k)/k\) vanishes at \(k=0\) .
Explicit forms
The derivative of the density wrt the chemical potential
\[\left(\frac{d n}{d \mu}\right)_T =
\frac{g}{2 \pi^2} \int_0^{\infty} \frac{k^2}{T} f (1-f) dk\]
Using \(h(k)=k^2/T\) we get
\[\left(\frac{d n}{d \mu}\right)_T =
\frac{g}{2 \pi^2} \int_0^{\infty}
\left(\frac{k^2+E^{*2}}{E^{*}}\right) f dk\]
The derivative of the density wrt the temperature
\[\left(\frac{d n}{d T}\right)_{\mu} =
\frac{g}{2 \pi^2} \int_0^{\infty} \frac{k^2(E^{*}-\nu)}{T^2}
f (1-f) dk
\quad ; \quad
\left(\frac{d n}{d T}\right)_{\mu} =
\frac{g}{2 \pi^2} \int_0^{\infty} \frac{k^2(E^{*}-m-\nu)}{T^2}
f (1-f) dk\]
Using \(h(k)=k^2(E^{*}-\nu)/T^2\) we get
\[\left(\frac{d n}{d T}\right)_{\mu} =
\frac{g}{2 \pi^2} \int_0^{\infty} \frac{f}{T}
\left[2 k^2+E^{*2}-E^{*} \nu -
k^2 \left(\frac{\nu}{E^{*}}\right)\right] dk\]
when the rest mass is included in the chemical potential and
\[\left(\frac{d n}{d T}\right)_{\mu} =
\frac{g}{2 \pi^2} \int_0^{\infty} \frac{f}{T}
\left[2 k^2+E^{*2}-E^{*}\left(\nu+m\right)-
k^2 \left(\frac{\nu+m}{E^{*}}\right)\right] dk\]
when the rest mass is not included in the chemical potential.
The derivative of the entropy wrt the chemical potential
\[\left(\frac{d s}{d \mu}\right)_T =
\frac{g}{2 \pi^2} \int_0^{\infty} k^2 f (1-f)
\frac{(E^{*}-\nu)}{T^2} dk
\quad ; \quad
\left(\frac{d s}{d \mu}\right)_T =
\frac{g}{2 \pi^2} \int_0^{\infty} k^2 f (1-f)
\frac{(E^{*}-m-\nu)}{T^2} dk\]
This verifies the Maxwell relation
\[\left(\frac{d s}{d \mu}\right)_T =
\left(\frac{d n}{d T}\right)_{\mu}\]
The derivative of the entropy wrt the temperature
\[\left(\frac{d s}{d T}\right)_{\mu} =
\frac{g}{2 \pi^2} \int_0^{\infty} k^2 f (1-f)
\frac{(E^{*}-\nu)^2}{T^3} dk
\quad ; \quad
\left(\frac{d s}{d T}\right)_{\mu} =
\frac{g}{2 \pi^2} \int_0^{\infty} k^2 f (1-f)
\frac{(E^{*}-m-\nu)^2}{T^3} dk\]
Using \(h(k)=k^2 (E^{*}-\nu)^2/T^3\)
\[\left(\frac{d s}{d T}\right)_{\mu} =
\frac{g}{2 \pi^2} \int_0^{\infty} \frac{f(E^{*}-\nu)}{E^{*}T^2}
\left[E^{* 3}+3 E^{*} k^2- (E^{* 2}+k^2)\nu\right] d k\]
when the rest mass is included in the chemical potential and
\[\left(\frac{d s}{d T}\right)_{\mu} =
\frac{g}{2 \pi^2} \int_0^{\infty} \frac{f(E^{*}-m-\nu)}{E^{*}T^2}
\left[E^{* 3}+3 E^{*} k^2- (E^{* 2}+k^2)(\nu+m)\right] d k\]
when the rest mass is not included in the chemical potential.
The derivative of the density wrt the effective mass
\[\left(\frac{d n}{d m^{*}}\right)_{T,\mu} =
-\frac{g}{2 \pi^2} \int_0^{\infty}
\frac{k^2 m^{*}}{E^{*} T} f (1-f) dk\]
Using \(h(k)=-(k^2 m^{*})/(E^{*} T)\) we get
\[\left(\frac{d n}{d m^{*}}\right)_{T,\mu} =
-\frac{g}{2 \pi^2} \int_0^{\infty}
m^{*} f dk\]
Expansions for fermions
Presuming the chemical potential includes the rest mass,
and \(E=\sqrt{k^2+m^2}\),
the pressure for non-interacting fermions with degeneracy \(g\) is
\[P = \frac{g T}{2 \pi^2} \int_0^{\infty}
k^2~dk~\ln \left[ 1 + e^{-(E-\mu)/T}\right] =
\frac{g}{2 \pi^2} \int_0^{\infty} k^2\left(\frac{k^2}{3 E}\right)~dk~
\frac{1}{1 + e^{(E-\mu)/T}} \, ,\]
where the second form is obtained with an integration by parts. We use
units where \(\hbar=c=1\). The variable substitutions from
[Johns96] are \(\ell = k/m\), \(\psi = (\mu-m)/T\), and
\(t=T/m\). (Presumably this choice of variables gives better
results for non-relativistic fermions because the mass is separated
from the chemical potential in the definition of \(\psi\), but I
haven’t checked this.) These replacements give
\[P = \frac{g m^4}{2 \pi^2}
\int_0^{\infty} d\ell~\frac{\ell^4}{3 \sqrt{\ell^2+1}}
\left( \frac{1}{1 + e^{z/t-\psi}} \right)\]
where \(z = \sqrt{\ell^2+1}-1\) .
Re-expressing in terms of \(z\), one obtains
\[\frac{\ell^4}{3 \sqrt{\ell^2+1}} = \frac{z^2(2+z)^2}
{3 (1+z)} \quad\mathrm{and}\quad
\frac{d \ell}{d z} = \frac{1+z}{\sqrt{z(2+z)}} \, .\]
The pressure is
\[P = \frac{g m^4}{2 \pi^2}
\int_0^{\infty} dz~\frac{1}{3}[z(2+z)]^{3/2}
\left[ \frac{1}{1 + e^{(z-x)/t}} \right] \, .\]
where \(x = \psi t = (\mu-m)/m\).
Degenerate expansion
The Sommerfeld expansion for \(t \rightarrow 0\) is
\[\begin{split}\begin{eqnarray}
\int_0^{\infty} dz~\frac{f(z)}{1 + e^{(z-x)/t}} &=&
\int_0^{x} f(z) + \frac{\pi^2 t^2}{6} f^{\prime}(x) +
\frac{7 \pi^4 t^4}{360} f^{(3)}(x) +
\frac{31 \pi^6 t^6}{15120} f^{(5)}(x) + \ldots \nonumber \\
&=& \int_0^{x} f(z) + \sum_{n=1}^{\infty}
\pi^{2n}t^{2n} \left[f^{(2n -1)}(x) \right]
\left[ \frac{2 (-1)^{1+n}(2^{2n-1}-1)B_{2n}}{(2n)!} \right] \nonumber
\end{eqnarray}\end{split}\]
This is an asymptotic expansion, and must thus be used with care.
In the case where \(f(z)=z^n\),
\[\int_0^{\infty} dz~\frac{f(z)}{1 + e^{(z-x)/t}} =
\int_0^{x} f(z) + \sum_{n=1}^{\infty}
\pi^{2n}t^{2n} (2n-1)! z^{2n-1}
\left[ \frac{2 (-1)^{1+n}(2^{2n-1}-1)B_{2n}}{(2n)!} \right]\]
Define \(\tilde{P}(x,t) \equiv 2 \pi^2 P/(g m^4)\). The first term
in the Sommerfeld expansion for \(\tilde{P}\) depends only on
\(x\) alone:
\[P_0 \equiv \frac{1}{24} (1+x)\sqrt{x(2+x)} \left[ -3 + 2 x(2+x)\right]
+ \frac{1}{4} \log \left[ \frac{
\sqrt{x}+\sqrt{2+x}}{\sqrt{2}} \right]\]
where \(x = \psi t\) . This expression cannot be used when
\(x\) is small, but a Taylor series expansion can be used
instead. A few terms are
\[\frac{2 \pi^2 P}{g m^4} = P_0 + \frac{\pi^2 t^2}{6} \sqrt{x(2+x)}(1 + x) +
\frac{7 \pi^4 t^4}{360} \left\{\frac{(1+x)(2
x^2+4x-1)}{[x(2+x)]^{3/2}} \right\}
-\frac{31\pi^6 t^6}{1008} \frac{(1+x)\sqrt{x(2+x)}}{x^4 (2+x)^4} +
\ldots\]
The number density is
\[n = \frac{dP}{d \mu} = \frac{d P}{d x} \frac{d x}{d \mu} =
\frac{1}{m} \left(\frac{d P}{d x}\right)_t\]
Note that because the density is a derivative, it is possible
that the terms in the density fail before the terms in the
pressure, thus we should use one less term for the density
when using the expansion. The entropy is
\[s = \frac{dP}{d T} = \frac{d P}{d t} \frac{d t}{d T} =
\frac{1}{m} \left(\frac{d P}{d t}\right)_x\]
The derivative of the number density with respect to the
chemical potential is
\[\frac{d n}{d \mu} = \frac{d^2P}{d \mu^2} = \frac{d}{d \mu}
\left(\frac{d P}{d x} \frac{d x}{d \mu}\right) =
\frac{d^2 P}{d x^2} \left(\frac{d x}{d \mu}\right)^2 +
\frac{d P}{d x} \frac{d^2 x}{d \mu^2} =
\frac{1}{m^2} \left(\frac{d^2 P}{d x^2}\right)_t \, .\]
The derivative of the number density with respect to the
temperature is
\[\frac{d n}{d T} = \frac{d^2P}{d \mu dT} =
\frac{1}{m^2} \frac{d^2 P}{d x d t} \, ,\]
and the derivative of the entropy density with respect to
the temperature is
\[\frac{d s}{d T} = \frac{d^2P}{d T^2} =
\frac{1}{m^2} \left(\frac{d^2 P}{d t^2}\right)_x \, .\]
Finally, the derivative of the number density with respect to the mass
is more involved because of the mass-dependent prefactor.
\[\begin{split}\begin{eqnarray}
\frac{d n}{d m} &=& \frac{4 n}{m}+
\left(\frac{g m^4}{2 \pi^2}\right) \frac{d}{d m}
\left(\frac{1}{m}\frac{d \tilde{P}}{d x} \right) =
\frac{4 n}{m} +
\left(\frac{g m^4}{2 \pi^2}\right)
\left[\frac{1}{m}\left(\frac{d^2\tilde{P}}{dx^2}\frac{dx}{dm}+
\frac{d^2\tilde{P}}{dt dx}\frac{dt}{dm}\right)-
\frac{1}{m^2}\frac{d \tilde{P}}{d x}\right] \nonumber \\
&=& \frac{4 n}{m} - \left(\frac{g m^2}{2 \pi^2}\right)
\left( \frac{d\tilde{P}}{dx}
+\frac{\mu}{m} \frac{d^2\tilde{P}}{dx^2}
+\frac{T}{m} \frac{d^2\tilde{P}}{dt dx} \right) =
\frac{3n}{m} -\left[(x+1) \left(\frac{dn}{d\mu}\right) +
t \left(\frac{dn}{dT}\right) \right] \nonumber
\end{eqnarray}\end{split}\]
These expansions are used in
o2scl::fermion_thermo_tl::calc_mu_deg()
and
o2scl::fermion_deriv_thermo_tl::calc_mu_deg()
.
Nondegenerate expansion
There is a useful identity ([Chandrasekhar10] and [Tooper69])
\[\int_0^{\infty} \frac{x^4 \left(x^2+z^2\right)^{-1/2}~dx}
{1+e^{\sqrt{x^2+z^2}-\phi}} =
3 z^2 \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2} e^{n \phi} K_2(n z)\]
which works well when \(\phi-z < -1\). This result directly
gives the sum in Johns96
\[P = \frac{g m^4}{2 \pi^2} \sum_{k=1}^{\infty} P_k \equiv
\frac{g m^4}{2 \pi^2} \left[ \sum_{k=1}^{\infty}
\frac{t^2 (-1)^{k+1}}{k^2} e^{k x/t} e^{k/t} K_2\left(\frac{k}{t}\right)
\right]\]
The function \(e^{y} K_2(y)\) is implemented in GSL as
gsl_sf_bessel_Kn_scaled()
. In the case that one
wants to include antiparticles, the result is
similar
\[P = \frac{g m^4}{2 \pi^2} \sum_{k=1}^{\infty} \bar{P}_k \equiv
\frac{g m^4}{2 \pi^2} \left\{ \sum_{k=1}^{\infty}
\frac{2 t^2 (-1)^{k+1}}{k^2} e^{-k/t} \mathrm{cosh}
\left[k(x+1)/t\right] \left[ e^{k/t}
K_2\left(\frac{k}{t}\right) \right]
\right\}\]
where the scaled Bessel function has been separated out.
Similarly defining
\[n = \frac{g m^3}{2 \pi^2} \sum_{k=1}^{\infty} n_k \, ,\]
the terms in the expansion for the density (without and
with antiparticles) are
\[\begin{split}\begin{eqnarray}
n_k &=& \frac{k}{t}{P_k}
\nonumber \\
\bar{n}_k &=& \frac{k}{t}{\bar{P}_k}
\mathrm{tanh} \left[k (x+1)/t\right]
\end{eqnarray}\end{split}\]
The entropy terms (with and without antiparticles) are
\[\begin{split}\begin{eqnarray}
s_k &=& \left( \frac{4t-kx-k}{kt}\right) n_k +
\frac{(-1)^{k+1}}{k} e^{k x/t} \left[ e^{k/t} K_1(k/t) \right]
\nonumber \\
\bar{s}_k &=&
-\frac{(1+x)\bar{n}_k}{t} +
\frac{2(-1)^{k+1}}{k} e^{-k/t} \mathrm{cosh}[k(x+1)/t]
\left[ e^{k/t} K_3(k/t) \right]
\end{eqnarray}\end{split}\]
included. To obtain these expressions, the recurrence relation
for the modified Bessel function of the second kind has been
used
\[K_{\nu+1}(x) = K_{\nu-1}(x) + \frac{2 \nu}{x} K_{\nu}(x)\]
For the derivatives, no additional Bessel functions are
required.
\[\begin{split}\begin{eqnarray}
\left(\frac{dn}{d\mu}\right)_k &=&
\frac{k}{t}{n_k} \\
\left(\frac{d\bar{n}}{d\mu}\right)_k &=&
\frac{k}{t}{\bar{n}_k} \\
\left(\frac{dn}{dT}\right)_k &=&
\frac{k}{t} s_k - \frac{1}{t} n_k
\end{eqnarray}\end{split}\]
\[\begin{split}\begin{eqnarray}
\left(\frac{d\bar{n}}{dT}\right)_k &=&
\frac{k}{t} \bar{s}_k \mathrm{tanh}\left[k(x+1)/t\right]
- \left\{ t+2 k (1+x) \mathrm{csch}\left[k(x+1)/t\right]
\right\} \frac{\bar{n}_k}{t^2} \\
\left(\frac{ds}{dT}\right)_k &=&
\left[ \frac{3t -2k x -2 k}{t^2}\right] s_k
+ \left[ \frac{5 k t - 2 k^2 x +5 k t x - k^2 x^2}{k t^3}\right] n_k \\
\left(\frac{d\bar{s}}{dT}\right)_k &=&
\left\{2 k (1+x) \mathrm{tanh}\left[ k(1+x)/t\right] - 3 t\right\}
\frac{\bar{s}_k}{t^2} +
\left\{2 k^2 (1+x)^2 \mathrm{tanh}\left[ k(1+x)/t\right] -
\right. \nonumber \\
&& \left.
k^2 (2 + 2 x + x^2) \mathrm{coth}\left[ k(1+x)/t\right] -
5 k(1+x) t \right\}
\frac{\bar{n}_k}{k t^3}
\end{eqnarray}\end{split}\]
These expansions are used in
o2scl::fermion_thermo_tl::calc_mu_ndeg()
.