Class eos_had_ddc (o2scl)¶
-
class eos_had_ddc : public o2scl::eos_had_eden_base¶
Relativistic mean field EOS with density dependent couplings.
Based on [Typel99].
- Idea for Future:
Implement the finite temperature EOS properly.
Masses
-
double mnuc¶
nucleon mass
-
double ms¶
\( \phi \) mass (in \( \mathrm{fm}^{-1} \) )
-
double mw¶
\( A_{\omega} \) mass (in \( \mathrm{fm}^{-1} \) )
-
double mr¶
\( A_{\rho} \) mass (in \( \mathrm{fm}^{-1} \) )
Parameters for couplings
-
double Gs¶
The coupling \( \Gamma_{\sigma}(\rho_{\mathrm{sat}}) \).
-
double Gw¶
The coupling \( \Gamma_{\omega}(\rho_{\mathrm{sat}}) \).
-
double Gr¶
The coupling \( \Gamma_{\rho}(\rho_{\mathrm{sat}}) \).
-
double as¶
\( a_{\sigma} \)
-
double aw¶
\( a_{\omega} \)
-
double ar¶
\( a_{\rho} \)
-
double bs¶
\( b_{\sigma} \)
-
double bw¶
\( b_{\omega} \)
-
double cs¶
\( c_{\sigma} \)
-
double cw¶
\( c_{\omega} \)
-
double ds¶
\( d_{\sigma} \)
-
double dw¶
\( d_{\omega} \)
-
double rho0¶
-
fermion_zerot fzt¶
Zero-temperature fermion thermodynamics.
-
eos_had_ddc()¶
-
inline virtual int calc_e(fermion &n, fermion &p, thermo &th)¶
Equation of state as a function of the densities.
-
virtual int calc_eq_e(fermion &neu, fermion &p, double sig, double ome, double rho, double &f1, double &f2, double &f3, thermo &th)¶
Equation of state and meson field equations as a function of the density.
This calculates the pressure and energy density as a function of \( \mu_n, \mu_p, \phi, A_{\omega}, A_{\rho} \) . When the field equations have been solved,
f1
,f2
, andf3
are all zero.Todo
In eos_had_ddc::calc_eq_e(): is the thermodynamic identity is satisfied even when the field equations are not solved? Check this.
-
inline virtual const char *type()¶
Return string denoting type (“eos_had_ddc”)