Class eos_had_ddc (o2scl)

O2scl : Class List

class eos_had_ddc : public o2scl::eos_had_eden_base

Relativistic mean field EOS with density dependent couplings.

Based on [Typel99].

Idea for Future:

Implement the finite temperature EOS properly.

Masses

double mnuc

nucleon mass

double ms

\( \phi \) mass (in \( \mathrm{fm}^{-1} \) )

double mw

\( A_{\omega} \) mass (in \( \mathrm{fm}^{-1} \) )

double mr

\( A_{\rho} \) mass (in \( \mathrm{fm}^{-1} \) )

Parameters for couplings

double Gs

The coupling \( \Gamma_{\sigma}(\rho_{\mathrm{sat}}) \).

double Gw

The coupling \( \Gamma_{\omega}(\rho_{\mathrm{sat}}) \).

double Gr

The coupling \( \Gamma_{\rho}(\rho_{\mathrm{sat}}) \).

double as

\( a_{\sigma} \)

double aw

\( a_{\omega} \)

double ar

\( a_{\rho} \)

double bs

\( b_{\sigma} \)

double bw

\( b_{\omega} \)

double cs

\( c_{\sigma} \)

double cw

\( c_{\omega} \)

double ds

\( d_{\sigma} \)

double dw

\( d_{\omega} \)

double rho0
fermion_zerot fzt

Zero-temperature fermion thermodynamics.

eos_had_ddc()
inline virtual int calc_e(fermion &n, fermion &p, thermo &th)

Equation of state as a function of the densities.

virtual int calc_eq_e(fermion &neu, fermion &p, double sig, double ome, double rho, double &f1, double &f2, double &f3, thermo &th)

Equation of state and meson field equations as a function of the density.

This calculates the pressure and energy density as a function of \( \mu_n, \mu_p, \phi, A_{\omega}, A_{\rho} \) . When the field equations have been solved, f1, f2, and f3 are all zero.

Todo

  • In eos_had_ddc::calc_eq_e(): is the thermodynamic identity is satisfied even when the field equations are not solved? Check this.

inline virtual const char *type()

Return string denoting type (“eos_had_ddc”)