Function vector_kurtosis (o2scl)¶
-
template<class vec_t>
double o2scl::vector_kurtosis(size_t n, const vec_t &data, double mean, double stddev)¶ Kurtosis with specified mean and standard deviation.
This function computes
\[ -3 + \frac{1}{N} \sum_i \left[ \frac{ \left(x_i - \mu \right)}{ \sigma }\right]^4 \]where the values of \( \mu \) and \( \sigma \) are given inmean
andstddev
.This function produces the same results as
gsl_stats_kurtosis_m_sd()
.If
n
is zero, this function will return zero without calling the error handler.
-
template<class vec_t>
double o2scl::vector_kurtosis(const vec_t &data, double mean, double stddev)¶ Kurtosis with specified mean and standard deviation.
This function computes
\[ -3 + \frac{1}{N} \sum_i \left[ \frac{ \left(x_i - \mu \right)}{ \sigma }\right]^4 \]where the values of \( \mu \) and \( \sigma \) are given inmean
andstddev
.This function produces the same results as
gsl_stats_kurtosis_m_sd()
.If
n
is zero, this function will return zero without calling the error handler.
-
template<class vec_t>
double o2scl::vector_kurtosis(size_t n, const vec_t &data)¶ Kurtosis with computed mean and standard deviation.
This function computes
\[ -3 + \frac{1}{N} \sum_i \left[ \frac{ \left(x_i - \mu \right)}{ \sigma }\right]^4 \]where the values of \( \mu \) and \( \sigma \) are computed using vector_mean() and vector_stddev().This function produces the same results as
gsl_stats_kurtosis()
.If
n
is zero, this function will return zero without calling the error handler.
-
template<class vec_t>
double o2scl::vector_kurtosis(const vec_t &data)¶ Kurtosis with computed mean and standard deviation.
This function computes
\[ -3 + \frac{1}{N} \sum_i \left[ \frac{ \left(x_i - \mu \right)}{ \sigma }\right]^4 \]where the values of \( \mu \) and \( \sigma \) are computed using vector_mean() and vector_stddev().This function produces the same results as
gsl_stats_kurtosis()
.If
n
is zero, this function will return zero without calling the error handler.