Function SV_decomp (o2scl_linalg)¶
-
template<class mat_t, class mat2_t, class vec_t, class vec2_t>
void o2scl_linalg::SV_decomp(size_t M, size_t N, mat_t &A, mat2_t &V, vec_t &S, vec2_t &work)¶ Factorise a general matrix into its SV decomposition using the Golub-Reinsch algorithm.
This factors matrix
Aof size(M,N)into\[ A = U~D~V^T \]whereUis a column-orthogonal matrix of size(M,N)(stored inA),Dis a diagonal matrix of size(N,N)(stored in the vectorSof sizeN), andVis a orthogonal matrix of size(N,N). The vectorworkis a workspace vector of sizeN. The matricesUandVare constructed so that\[ U^T~U = I \qquad \mathrm{and} \qquad V^T~V = V~V^T = I \]This algorithm requres \( M \geq N \).
- Todo:
Test N=1 case, N=2 case, and non-square matrices.