Class tensor_base (o2scl)¶
-
template<class data_t = double, class vec_t = std::vector<data_t>, class vec_size_t = std::vector<size_t>>
class tensor_base¶ Tensor class with arbitrary dimensions.
The elements of a tensor are typically specified as a list of
size_tnumbers with length equal to the tensor rank. For a rank-4 tensor namedt, the elementt[1][2][0][3]can be obtained with something similar tosize_t ix[4]={1,2,0,3}; double x=t.get(ix);
Empty tensors have zero rank.
The type
vec_tcan be any vector type withoperator[],size()andresize()methods. The typevec_size_tcan be any integer-like vector type withoperator[],size()andresize()methods.For I/O with tensors, see o2scl_hdf::hdf_file::setd_ten() and o2scl_hdf::hdf_file::getd_ten() .
See the the discussion in the sections Tensors and I/O and contiguous storage of the User’s Guide for more details.
The storage pattern is a generalization of row-major order. In the case of a 4-rank tensor, the location of a generic element is
\[ \left( \left( i_0 s_1 + i_1 \right) s_2 + i_2 \right) s_3 + i_3 \, . \]In this case the distance between two elements \((i_0,i_1, i_2,i_3)\) and \( (i_0+1,i_1,i_2,i_3) \) is \( s_1 s_2 s_3 \), the distance between two elements \((i_0,i_1,i_2, i_3)\) and \( (i_0,i_1+1,i_2,i_3) \) is \( s_2 s_3 \), and the elements \((i_0,i_1,i_2,i_3)\) and \( (i_0,i_1,i_2,i_3+1) \) are adjacent.In class tensor:
Future: Create an operator[] for tensor and not just tensor1?
Future: Could implement arithmetic operators + and - and some
different products.
Future: Implement copies to and from vector
and matrices
Future: Implement tensor contractions, i.e. tensor
= tensor * tensor
Future: Could be interesting to write an iterator for this class.
Future: Try character and string tensors?
Note
Slices of tensors are subsets obtained from fixing the index of several dimensions, while letting other dimensions vary. For a slice with one dimension not fixed, see vector_slice(). The o2scl::tensor::vector_slice() function should clearly work for uBlas vectors, and seems to work with std::vector objects also, but latter use has not been fully tested.
Subclassed by o2scl::tensor< double, std::vector< double >, std::vector< size_t > >, o2scl::tensor< int >, o2scl::tensor< size_t >, o2scl::tensor< data_t, vec_t, vec_size_t >
Get functions
-
typedef boost::numeric::ublas::vector_slice<const boost::numeric::ublas::vector<data_t>> const_ubvector_slice¶
-
typedef boost::numeric::ublas::slice slice¶
-
template<class size_vec_t>
inline data_t &get(const size_vec_t &index)¶ Get the element indexed by
index.
-
template<class size_vec_t>
inline data_t &get_arr(const size_vec_t &index)¶ Get the element indexed by
index.
-
template<class size_vec_t>
inline data_t const &get(const size_vec_t &index) const¶ Get a const reference to the element indexed by
index.
-
template<class size_vec_t>
inline data_t const &get_arr(const size_vec_t &index) const¶ Get a const reference to the element indexed by
index.
Method to check for valid object
-
inline void is_valid() const¶
Check that the o2scl::tensor object is valid.
Copy constructors
-
inline tensor_base(const tensor_base<data_t, vec_t, vec_size_t> &t)¶
Copy using
operator()
-
inline tensor_base<data_t, vec_t, vec_size_t> &operator=(const tensor_base<data_t, vec_t, vec_size_t> &t)¶
Copy using
operator=()
Clear method
-
inline void clear()¶
Clear the tensor of all data and free allocated memory.
Set functions
-
template<class size_vec_t>
inline void set(const size_vec_t &index, data_t val)¶ Set the element indexed by
indexto valueval.
-
template<class size_vec_t>
inline void set_arr(const size_vec_t &index, data_t val)¶ Set the element indexed by
indexto valueval.
-
inline void swap_data(vec_t &dat)¶
Swap the data vector.
This function swaps
datand the internal data vector. The variabledatmust be preallocated to have the correct size.
-
inline friend void swap(tensor_base &t1, tensor_base &t2)¶
Swap two tensors.
Slice function
-
template<class size_vec_t>
inline ubvector_slice vector_slice(size_t ix, const size_vec_t &index)¶ Fix all but one index to create a vector.
This function fixes all of the indices to the values given in
indexexcept for the index numberix, and returns the corresponding vector, whose length is equal to the size of the tensor in that index. The valueindex[ix]is ignored.For example, for a rank 3 tensor allocated with
the following codetensor t; size_t dim[3]={3,4,5}; t.resize(3,dim);
Gives a vectorsize_t index[3]={1,0,3}; ubvector_view v=t.vector_slice(1,index);
vof length 4 which refers to the valuest(1,0,3),t(1,1,3),t(1,2,3), andt(1,3,3).
-
template<class size_vec_t>
inline const const_ubvector_slice const_vector_slice(size_t ix, const size_vec_t &index) const¶ Fix all but one index to create a vector (const version)
See documentation for vector_slice().
Resize method
-
template<class size_vec_t>
inline void resize(size_t rank, const size_vec_t &dim)¶ Resize the tensor to rank
rankwith sizes given indim.The parameter
dimmust be a vector of sizes with a length equal torank. This resize method is always destructive.If the user requests any of the sizes to be zero, this function will call the error handler.
Size functions
-
inline size_t get_rank() const¶
Return the rank of the tensor.
-
inline size_t get_size(size_t i) const¶
Returns the size of the ith index.
-
inline const vec_size_t &get_size_arr() const¶
Return the full vector of sizes.
-
inline size_t total_size() const¶
Returns the size of the tensor (the product of the sizes over every index)
Index manipulation
-
template<class size_vec_t>
inline size_t pack_indices(const size_vec_t &index)¶ Pack the indices into a single vector index.
-
template<class size_vec_t>
inline void unpack_index(size_t ix, size_vec_t &index)¶ Unpack the single vector index into indices.
Minimum, maximum, and sum
-
inline void min_index(vec_size_t &index)¶
Compute the index of the minimum value in the tensor.
-
inline void min(vec_size_t &index, data_t &val)¶
Compute the index of the minimum value in the tensor and return the minimum.
-
inline void max_index(vec_size_t &index)¶
Compute the index of the maximum value in the tensor.
-
inline void max(vec_size_t &index, data_t &val)¶
Compute the index and value of the maximum value in the tensor and return the maximum.
-
inline void minmax_value(data_t &min, data_t &max)¶
Compute the minimum and maximum values in the tensor.
-
inline void minmax_index(vec_size_t &index_min, vec_size_t &index_max)¶
Compute the indices of the minimum and maximum values in the tensor.
-
inline void minmax(vec_size_t &index_min, data_t &min, vec_size_t &index_max, data_t &max)¶
Compute the indices and values of the maximum and minimum in the tensor.
Public Functions
-
inline tensor_base()¶
Create an empty tensor with zero rank.
-
template<class size_vec_t>
inline tensor_base(size_t rank, const size_vec_t &dim)¶ Create a tensor of rank
rankwith sizes given indim.The parameter
dimmust be a pointer to a vector of sizes with lengthrank. If the user requests any of the sizes to be zero, this constructor will call the error handler, create an empty tensor, and will allocate no memory.
-
inline virtual ~tensor_base()¶
Protected Attributes
-
vec_size_t size¶
A rank-sized vector of the sizes of each dimension.
-
size_t rk¶
Rank.