Class polylog (o2scl)¶
-
template<class fp_t = double, class func_t = funct_ld, class internal_fp_t = long double>
class polylog¶ Class to compute the polylogarithm function.
This class uses integral representations based on the Fermi-Dirac or Bose-Einstein functions to compute the polylog functions.
The relationship between the polylogarithm and the Fermi-Dirac distribution is:
\[ \mathrm{Li}_{1+s}(-e^{\mu}) = - \frac{1}{\Gamma(s+1)} \int_0^{\infty} \frac{k^{s}}{e^{k-\mu}+1} \]or\[ \mathrm{Li}_{s}(z) = - \frac{1}{\Gamma(s)} \int_0^{\infty} \frac{k^{s-1}}{e^{k-\ln(-z)}+1} \]this representation works for negative values of \( z \).The relationship between the polylogarithm and the Bose-Einstein distribution is:
\[ \mathrm{Li}_{1+s}(e^{\mu}) = \frac{1}{\Gamma(s+1)} \int_0^{\infty} \frac{k^{s}}{e^{k-\mu}-1} \]or\[ \mathrm{Li}_{s}(z) = \frac{1}{\Gamma(s)} \int_0^{\infty} \frac{k^{s-1}}{e^{k-\ln(z)}-1} \]this representation works for positive values of \( z \).Todo
In class polylog, test with higher accuracy floating point types.
A classic reference for the polylogarithm function is [Lewin81].
Note
experimental
Public Functions
-
inline polylog()¶
Protected Attributes
-
fermi_dirac_integ_tl<o2scl::inte_double_exp_boost<func_t, internal_fp_t>, internal_fp_t> it_fd¶
The integrator for negative arguments.
-
bose_einstein_integ_tl<o2scl::inte_double_exp_boost<func_t, internal_fp_t>, internal_fp_t> it_be¶
The integrator for positive arguments.
-
inline polylog()¶