Class nucmass_ldrop_skin (o2scl)

O2scl : Class List

class nucmass_ldrop_skin : public o2scl::nucmass_ldrop

More advanced liquid drop model.

In addition to the physics in nucmass_ldrop, this includes corrections for

  • finite temperature

  • neutron skin

  • an isospin-dependent surface energy

  • decrease in the Coulomb energy from external protons

Nuclear radii and volume fractions

The nuclear, neutron and proton radii are determined by

\[\begin{split}\begin{eqnarray*} R &=& \left( \frac{3 A}{4 \pi n_L} \right)^{1/3} \nonumber \\ R_n &=& \left( \frac{3 N}{4 \pi n_n} \right)^{1/3} \nonumber \\ R_p &=& \left( \frac{3 Z}{4 \pi n_p} \right)^{1/3} \end{eqnarray*}\end{split}\]
where the densities \( n_L, n_n \) and \( n_p \) are determined in the same way as in nucmass_ldrop, except that now \( \delta \equiv I \zeta \), where \( \zeta \) is stored in doi .

The volume fraction occupied by protons, \( \chi_p \) is

\[ \chi_p = \left(\frac{R_p}{R_{\mathrm{WS}}}\right)^3 \]
and similarly for neutrons. We also define \( \chi \) as
\[ \chi = \left(\frac{R}{R_{\mathrm{WS}}}\right)^3 \, . \]
We need to use charge neutrality
\[ \frac{4 \pi}{3} R_p^3 \left(n_p - n_{p,\mathrm{out}}\right) + \frac{4 \pi}{3} R_{\mathrm{WS}}^3 n_{p,\mathrm{out}} = \frac{4 \pi}{3} R_{\mathrm{WS}}^3 n_{e,\mathrm{out}} \]
thus
\[ \chi_p \left(n_p - n_{p,\mathrm{out}}\right) + n_{p,\mathrm{out}} = n_{e,\mathrm{out}} \, . \]

Bulk energy

If new_skin_mode is false, then the bulk energy is also computed as in nucmass_ldrop. Otherwise, the number of nucleons in the core is computed with

\[\begin{split}\begin{eqnarray*} A_{\mathrm{core}} = Z (n_n+n_p)/n_p~\mathrm{for}~N\geq Z \\ A_{\mathrm{core}} = N (n_n+n_p)/n_p~\mathrm{for}~Z>N \\ \end{eqnarray*}\end{split}\]
and \( A_{\mathrm{skin}} = A - A_{\mathrm{core}} \). The core contribution to the bulk energy is
\[ E_{\mathrm{core}}/A = \left(\frac{A_{\mathrm{core}}}{A}\right) \frac{1}{n_{L} } \left[\varepsilon(n_n,n_p) - n_n m_n - n_p m_p \right] \]
then the skin contribution is
\[ E_{\mathrm{skin}}/A = \left(\frac{A_{\mathrm{skin}}}{A}\right) \frac{1}{n_{L} } \left[\varepsilon(n_n,0) - n_n m_n \right] \quad\mathrm{for}\quad N>Z \]
and
\[ E_{\mathrm{skin}}/A = \left(\frac{A_{\mathrm{skin}}}{A}\right) \frac{1}{n_{L} } \left[\varepsilon(0,n_p) - n_p m_p \right] \quad\mathrm{for}\quad Z>N \]

Surface energy

If full_surface is false, then the surface energy per baryon is just that from nucmass_ldrop, with extra factors for dimension and the surface symmetry energy

\[ E_{\mathrm{surf}}/A = \frac{\sigma d}{3 n_L} \left(\frac{36 \pi n_L}{A} \right)^{1/3} \left( 1- \sigma_{\delta} \delta^2 \right) \]
where \( \sigma_{\delta} \) is unitless and stored in ss.

If full_surface is true, then the following temperature- and isospin-dependent surface energy is used. Taking \( x \equiv n_p /(n_n+n_p) \), the new surface tension is

\[ \sigma(x,T) = \left[ \frac{16+b}{x^{-3}+b+(1-x)^{-3}} \right] \left[\frac{1-T^2/T_c(x)^2}{1+a(x) T^2/T_c(x)^2}\right]^{p} \]
where
\[ a(x) = a_0 + a_2 y^2 + a_4 y^4 \, , \]
\[ T_c(x) = T_c(x=1/2) \left( 1-c y^2 - d y^4\right)^{1/2} \]
and \( y=1/2-x \). The value \( p \) is stored in pp and the value \( T_c(x=1/2) \) is stored in Tchalf. Currently, the values of \( c=3.313 \) and \( d=7.362 \) are fixed and cannot be changed. The value of \( b \) is determined from
\[ b=-16+\frac{96}{\sigma_{\delta}} \]
which is chosen to ensure that the surface energy is identical to the expression used when full_surface is false for small values of \( \delta \).

This surface energy comes from [Steiner08], which was originally based on the expression in [Lattimer85].

Coulomb energy

The Coulomb energy density is

\[ \varepsilon_{\mathrm{Coul}} = 2 \pi \chi_p e^2 R_p^2 (n_p-n_{p,\mathrm{out}})^2 f_d(\chi_p) \]
where the function \( f_d(\chi_p) \) is
\[ f_d(\chi_p) = \frac{1}{(d+2)} \left[ \frac{2}{(d-2)} \left( 1 - \frac{d}{2} \chi_p^{(1-2/d)} \right) + \chi_p \right] \, . \]

AWS, 12/23/24: The fit to nuclear data seems to be better if we use

\[ \varepsilon_{\mathrm{Coul}} = 2 \pi \chi e^2 R_p^2 (n_p-n_{p,\mathrm{out}})^2 f_d(\chi_p) \]
instead. Thus
\[ E_{\mathrm{Coul}}/A = \left(\frac{2 \pi e^2 R_p^2}{nL}\right) (n_p-n_{p,\mathrm{out}})^2 f_d(\chi_p) \]
When \( d=3 \), \( f_3(\chi_p) \) reduces to
\[ \frac{1}{5} \left[ 2 - 3 \chi_p^{1/3} + \chi_p \right] \, . \]
Then, using the approximation \( \chi_p = \chi \) and the limit \( \chi_p \rightarrow 0 \) gives the expression used in nucmass_ldrop. The second term in square brackets above gives the Wigner-Seitz approximation to the so-called “lattice” contribution
\[ \varepsilon_{\mathrm{L}} = -\frac{6 \pi e^2}{5} \chi_p^{4/3} e^2 R_p^2 (n_p-n_{p,\mathrm{out}})^2 \]
Taking \( n_{p,\mathrm{out}}=0 \) and using
\[ R_p \Rightarrow \left( \frac{3 Z}{4 \pi n_p}\right)^{1/3} \]
we get
\[ \varepsilon_{\mathrm{L}} = -\left(\frac{6 \cdot 3^{2/3} \pi^{1/3}} {5 \cdot 4^{2/3}}\right) e^2 Z^{2/3} \left(\chi_p n_p\right)^{4/3} \]
and noting that charge equality implies \( \chi_p n_p = n_e \), gives
\[ \varepsilon_{\mathrm{L}} = -1.4508 Z^{2/3} e^2 n_e^{4/3} \]
which is approximately equal to the expression used in eos_crust .

See [Ravenhall83] and [Steiner12].

Todos and Future

Todo

In class nucmass_ldrop_skin:

  • (future) Add translational energy?

  • (future) Remove excluded volume correction and compute nuclear mass relative to the gas rather than relative to the vacuum.

  • (future) In principle, Tc should be self-consistently determined from the EOS.

  • (future) Does this class work if the nucleus is “inside-out”?

References

Designed in [Steiner08] and [Souza09co] based in part on [Lattimer85] and [Lattimer91].

Note

The input parameter T should be given in units of inverse Fermis. This is a bit confusing, since the binding energy is returned in MeV.

Subclassed by o2scl::nucmass_ldrop_pair

Settings

bool rel_vacuum

If true, define the nuclear mass relative to the vacuum (default true)

bool full_surface

If true, properly fix the surface for the pure neutron matter limit (default true)

bool new_skin_mode

If true, separately compute the skin for the bulk energy (default false)

Surface parameters

double doi

Ratio of \( \delta/I \) (default 0.8).

double ss

Surface symmetry energy coefficient (default 0.5)

Input parameters for temperature dependence

double pp

Exponent (default 1.25)

double a0

Coefficient (default 0.935)

double a2

Coefficient (default -5.1)

double a4

Coefficient (default -1.1)

double Tchalf

The critical temperature of isospin-symmetric matter in \( \mathrm{fm}^{-1} \) (default \( 20.085/(\hbar c)\).)

Basic usage

nucmass_ldrop_skin()

Default constructor.

virtual double binding_energy_densmat(double Z, double N, double npout = 0.0, double nnout = 0.0, double ne = 0.0, double T = 0.0)

Return the free binding energy of a nucleus in a many-body environment.

inline virtual const char *type()

Return the type, "nucmass_ldrop_skin".

Fitting functions

virtual int fit_fun(size_t nv, const ubvector &x)

Fix parameters from an array for fitting.

virtual int guess_fun(size_t nv, ubvector &x)

Fill array with guess from present values for fitting.