Class fermi_dirac_multip (o2scl)¶
-
class fermi_dirac_multip¶
Fermi-Dirac integral using multiprecison.
Todo
In class fermi_dirac_multip: implement degenerate and nondegenerate expansions.
The base integrators
-
inte_kronrod_boost<61, cpp_dec_float_25, cpp_dec_float_35, cpp_dec_float_50, cpp_dec_float_100> ikb¶
-
inte_adapt_cern iac¶
-
bool err_nonconv¶
If true, then convergence failures call the error handler (default true)
-
inline fermi_dirac_multip()¶
-
inline void set_tol(const double &tol_)¶
Set tolerance.
-
template<class fp_t>
inline int calc_1o2_ret_full(fp_t y, fp_t &res, fp_t &err, int &method)¶ Fermi-Dirac integral of order \( 1/2 \).
-
template<class fp_t>
inline int calc_1o2_ret(fp_t y, fp_t &res, fp_t &err)¶ Fermi-Dirac integral of order \( 1/2 \).
-
template<class fp_t>
inline int calc_m1o2_ret_full(fp_t y, fp_t &res, fp_t &err, int &method)¶ Fermi-Dirac integral of order \( -1/2 \).
-
template<class fp_t>
inline int calc_m1o2_ret(fp_t y, fp_t &res, fp_t &err)¶ Fermi-Dirac integral of order \( -1/2 \).
-
template<class fp_t>
inline int calc_3o2_ret_full(fp_t y, fp_t &res, fp_t &err, int &method)¶ Fermi-Dirac integral of order \( 3/2 \).
-
template<class fp_t>
inline int calc_3o2_ret(fp_t y, fp_t &res, fp_t &err)¶ Fermi-Dirac integral of order \( 3/2 \).
-
template<class fp_t>
inline int calc_2_ret_full(fp_t y, fp_t &res, fp_t &err, int &method)¶ Fermi-Dirac integral of order \( 2 \).
-
template<class fp_t>
inline int calc_2_ret(fp_t y, fp_t &res, fp_t &err)¶ Fermi-Dirac integral of order \( 2 \).
-
template<class fp_t>
inline int calc_3_ret_full(fp_t y, fp_t &res, fp_t &err, int &method)¶ Fermi-Dirac integral of order \( 3 \).
-
template<class fp_t>
inline int calc_3_ret(fp_t y, fp_t &res, fp_t &err)¶ Fermi-Dirac integral of order \( 3 \).
-
template<class fp_t>
inline int calc_err_full(fp_t n, fp_t y, fp_t &res, fp_t &err, int &method)¶ Fermi-Dirac integral of any order.
Protected Functions
Protected Attributes
-
double tol¶
Tolerance.