Class eos_quark_cfl6 (o2scl)¶
-
class eos_quark_cfl6 : public o2scl::eos_quark_cfl¶
An EOS like eos_quark_cfl but with a color-superconducting ‘t Hooft interaction.
Beginning with the Lagrangian:
\[ {\cal L} = {\cal L}_{Dirac} + {\cal L}_{NJL} + {\cal L}_{'t Hooft} + {\cal L}_{SC} + {\cal L}_{SC6} \]\[ {\cal L}_{Dirac} = {\bar q} \left( i \partial -m - \mu \gamma^0 \right) q \]\[ {\cal L}_{NJL} = G_S \sum_{a=0}^8 \left[ \left( {\bar q} \lambda^a q \right)^2 - \left( {\bar q} \lambda^a \gamma^5 q \right)^2 \right] \]\[ {\cal L}_{'t Hooft} = G_D \left[ \mathrm{det}_f {\bar q} \left(1-\gamma^5 \right) q +\mathrm{det}_f {\bar q} \left(1+\gamma^5 \right) q \right] \]\[ {\cal L}_{SC} = G_{DIQ} \left( {\bar q}_{i \alpha} i \gamma^5 \varepsilon^{i j k} \varepsilon^{\alpha \beta \gamma} q^C_{j \beta} \right) \left( {\bar q}_{\ell \delta} i \gamma^5 \epsilon^{\ell m k} \epsilon^{\delta \varepsilon \gamma} q^C_{m \varepsilon} \right) \]\[ {\cal L}_{SC6} = K_D \left( {\bar q}_{i \alpha} i \gamma^5 \varepsilon^{i j k} \varepsilon^{\alpha \beta \gamma} q^C_{j \beta} \right) \left( {\bar q}_{\ell \delta} i \gamma^5 \epsilon^{\ell m n} \epsilon^{\delta \varepsilon \eta} q^C_{m \varepsilon} \right) \left( {\bar q}_{k \gamma} q_{n \eta} \right) \]We can simplify the relevant terms in \({\cal L}_{NJL}\):
\[ {\cal L}_{NJL} = G_S \left[ \left({\bar u} u\right)^2+ \left({\bar d} d\right)^2+ \left({\bar s} s\right)^2 \right] \]and in \({\cal L}_{'t Hooft}\):\[ {\cal L}_{NJL} = G_D \left( {\bar u} u {\bar d} d {\bar s} s \right) \]Using the definition:
\[ \Delta^{k \gamma} = \left< {\bar q} i \gamma^5 \epsilon \epsilon q^C_{} \right> \]and the ansatzes:\[ ({\bar q}_1 q_2) ({\bar q}_3 q_4) \rightarrow {\bar q}_1 q_2 \left< {\bar q}_3 q_4 \right> +{\bar q}_3 q_4 \left< {\bar q}_1 q_2 \right> -\left< {\bar q}_1 q_2 \right> \left< {\bar q}_3 q_4 \right> \]\[ ({\bar q}_1 q_2) ({\bar q}_3 q_4) ({\bar q}_5 q_6) \rightarrow {\bar q}_1 q_2 \left< {\bar q}_3 q_4 \right> \left< {\bar q}_5 q_6 \right> +{\bar q}_3 q_4 \left< {\bar q}_1 q_2 \right> \left< {\bar q}_5 q_6 \right> +{\bar q}_5 q_6 \left< {\bar q}_1 q_2 \right> \left< {\bar q}_3 q_4 \right> -2\left< {\bar q}_1 q_2 \right> \left< {\bar q}_3 q_4 \right> \left< {\bar q}_5 q_6 \right> \]for the mean field approximation, we can rewrite the Lagrangian\[ {\cal L}_{NJL} = 2 G_S \left[ \left( {\bar u} u \right) \left< {\bar u} u \right> +\left( {\bar d} d \right) \left< {\bar d} d \right> +\left( {\bar s} s \right) \left< {\bar s} s \right> - \left< {\bar u} u \right>^2 - \left< {\bar d} d \right>^2 - \left< {\bar s} s \right>^2 \right] \]\[ {\cal L}_{'t Hooft} = - 2 G_D \left[ \left( {\bar u} u \right) \left< {\bar u} u \right> \left< {\bar s} s \right> + \left( {\bar d} d \right) \left< {\bar u} u \right> \left< {\bar s} s \right> + \left( {\bar s} s \right) \left< {\bar u} u \right> \left< {\bar d} d \right> - 2 \left< {\bar u} u \right>\left< {\bar d} d \right> \left< {\bar s} s \right> \right] \]\[ {\cal L}_{SC} = G_{DIQ} \left[ \Delta^{k \gamma} \left( {\bar q}_{\ell \delta} i \gamma^5 \epsilon^{\ell m k} \epsilon^{\delta \varepsilon \gamma} q^C_{m \varepsilon} \right) + \left( {\bar q}_{i \alpha} i \gamma^5 \varepsilon^{i j k} \varepsilon^{\alpha \beta \gamma} q^C_{j \beta} \right) \Delta^{k \gamma \dagger} - \Delta^{k \gamma} \Delta^{k \gamma \dagger} \right] \]\[ {\cal L}_{SC6} = K_D \left[ \left( {\bar q}_{m \varepsilon} q_{n \eta} \right) \Delta^{k \gamma} \Delta^{m \varepsilon \dagger} + \left( {\bar q}_{i \alpha} i \gamma^5 \varepsilon^{i j k} \varepsilon^{\alpha \beta \gamma} q^C_{j \beta} \right) \Delta^{m \varepsilon \dagger} \left< {\bar q}_{m \varepsilon} q_{n \eta} \right> \right] \]\[ + K_D \left[\Delta^{k \gamma} \left( {\bar q}_{\ell \delta} i \gamma^5 \epsilon^{\ell m n} \epsilon^{\delta \varepsilon \eta} q^C_{m \varepsilon} \right) \left< {\bar q}_{m \varepsilon} q_{n \eta} \right> -2 \Delta^{k \gamma} \Delta^{m \varepsilon \dagger} \left< {\bar q}_{m \varepsilon} q_{n \eta} \right> \right] \]If we make the definition \( {\tilde \Delta} = 2 G_{DIQ} \Delta \)
References:
Created for [Steiner05].
Public Types
-
typedef boost::numeric::ublas::vector<std::complex<double>> ubvector_complex¶
-
typedef boost::numeric::ublas::matrix<std::complex<double>> ubmatrix_complex¶
Public Functions
-
eos_quark_cfl6()¶
-
virtual ~eos_quark_cfl6()¶
-
virtual int calc_eq_temp_p(quark &u, quark &d, quark &s, double &qq1, double &qq2, double &qq3, double &gap1, double &gap2, double &gap3, double mu3, double mu8, double &n3, double &n8, thermo &qb, double temper)¶
Calculate the EOS.
Calculate the EOS from the quark condensates. Return the mass gap equations in
qq1
,qq2
,qq3
, and the normal gap equations ingap1
,gap2
, andgap3
.Using
fromqq=true
as in eos_quark_njl and nambujl_temp_eos does not work here and will return an error.If all of the gaps are less than gap_limit, then the nambujl_temp_eos::calc_temp_p() is used, and
gap1
,gap2
, andgap3
are set to equalu.del
,d.del
, ands.del
, respectively.
-
virtual int integrands(double p, double res[])¶
The momentum integrands.
-
virtual int test_derivatives(double lmom, double mu3, double mu8, test_mgr &t)¶
Check the derivatives specified by eigenvalues()
-
virtual int eigenvalues6(double lmom, double mu3, double mu8, double egv[36], double dedmuu[36], double dedmud[36], double dedmus[36], double dedmu[36], double dedmd[36], double dedms[36], double dedu[36], double dedd[36], double deds[36], double dedmu3[36], double dedmu8[36])¶
Calculate the energy eigenvalues and their derivatives.
Given the momentum
mom
, and the chemical potentials associated with the third and eighth gluons (mu3
andmu8
), this computes the eigenvalues of the inverse propagator and the assocated derivatives.Note that this is not the same as eos_quark_cfl::eigenvalues() which returns
dedmu
ratherdedqqu
.
-
virtual int make_matrices(double lmom, double mu3, double mu8, double egv[36], double dedmuu[36], double dedmud[36], double dedmus[36], double dedmu[36], double dedmd[36], double dedms[36], double dedu[36], double dedd[36], double deds[36], double dedmu3[36], double dedmu8[36])¶
Construct the matrices, but don’t solve the eigenvalue problem.
This is used by check_derivatives() to make sure that the derivative entries are right.
-
inline virtual const char *type()¶
Return string denoting type (“eos_quark_cfl6”)
Public Members
-
double KD¶
The color superconducting ‘t Hooft coupling (default 0)
-
double kdlimit¶
The absolute value below which the CSC ‘t Hooft coupling is ignored(default \( 10^{-6} \))
Protected Functions
-
int set_masses()¶
Set the quark effective masses from the gaps and the condensates.
Protected Attributes
-
gsl_matrix_complex *iprop6¶
Storage for the inverse propagator.
-
gsl_matrix_complex *eivec6¶
The eigenvectors.
-
ubmatrix_complex dipdgapu¶
The derivative wrt the ds gap.
-
ubmatrix_complex dipdgapd¶
The derivative wrt the us gap.
-
ubmatrix_complex dipdgaps¶
The derivative wrt the ud gap.
-
ubmatrix_complex dipdqqu¶
The derivative wrt the up quark condensate.
-
ubmatrix_complex dipdqqd¶
The derivative wrt the down quark condensate.
-
ubmatrix_complex dipdqqs¶
The derivative wrt the strange quark condensate.
-
gsl_vector *eval6¶
Storage for the eigenvalues.
-
gsl_eigen_hermv_workspace *w6¶
GSL workspace for the eigenvalue computation.
Protected Static Attributes
-
static const int mat_size = 36¶
The size of the matrix to be diagonalized.
Private Functions
-
eos_quark_cfl6(const eos_quark_cfl6&)¶
-
eos_quark_cfl6 &operator=(const eos_quark_cfl6&)¶
-
typedef boost::numeric::ublas::vector<std::complex<double>> ubvector_complex¶