Class diff_evo_adapt (o2scl)¶
- 
template<class func_t = multi_funct, class vec_t = boost::numeric::ublas::vector<double>, class init_funct_t = mm_funct>
 class diff_evo_adapt : public o2scl::diff_evo<multi_funct, boost::numeric::ublas::vector<double>, mm_funct>¶
- Multidimensional minimization by the differential evolution method. - This class minimizes a function using differential evolution. This method is a genetic algorithm and as such works well for discontinuous problems, since it does not require the gradient of the function to be minimized. - This is an adaptive version of diff_evo as described in - Lower bound and range of F (defaults 0.1 and 0.9) - 
double fl¶
 - 
double fr¶
 - 
inline diff_evo_adapt()¶
 - 
inline virtual int mmin(size_t nvar, vec_t &x0, double &fmin, func_t &func)¶
- Calculate the minimum - fminof- funcw.r.t the array- xof size- nvar.
 - 
inline virtual void print_iter(size_t nvar, double fmin, int iter, vec_t &best_fit, size_t pop_size_loc, size_t nconverged_loc, size_t nconv_loc)¶
- Print out iteration information. 
 - 
inline virtual int initialize_population(size_t nvar, vec_t &x0, size_t pop_size_loc)¶
- Initialize a population of random agents. 
 - 
diff_evo_adapt(const diff_evo_adapt<func_t, vec_t, init_funct_t>&)¶
 - 
diff_evo_adapt<func_t, vec_t, init_funct_t> &operator=(const diff_evo_adapt<func_t, vec_t, init_funct_t>&)¶
 - Public Types - 
typedef boost::numeric::ublas::vector<double> ubvector¶
 
- 
double fl¶